Inverse functions of polynomials and orthogonal polynomials as operator monotone functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Functions of Polynomials and Orthogonal Polynomials as Operator Monotone Functions

We study the operator monotonicity of the inverse of every polynomial with a positive leading coefficient. Let {pn}n=0 be a sequence of orthonormal polynomials and pn+ the restriction of pn to [an,∞), where an is the maximum zero of pn. Then p −1 n+ and the composite pn−1 ◦ p −1 n+ are operator monotone on [0,∞). Furthermore, for every polynomial p with a positive leading coefficient there is a...

متن کامل

Orthogonal polynomials and analytic functions

For a positive definite infinite matrix A, we study the relationship between its associated sequence of orthonormal polynomials and the asymptotic behaviour of the smallest eigenvalue of its truncation An of size n×n. For the particular case of A being a Hankel or a Hankel block matrix, our results lead to a characterization of positive measures with finite index of determinacy and of completel...

متن کامل

Orthogonal Functions Generalizing Jack Polynomials

The rational Cherednik algebra H is a certain algebra of differential-reflection operators attached to a complex reflection group W and depending on a set of central parameters. Each irreducible representation S of W corresponds to a standard module M(λ) for H. This paper deals with the infinite family G(r, 1, n) of complex reflection groups; our goal is to study the standard modules using a co...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Basic Hypergeometric Functions and Orthogonal Laurent Polynomials

A three-complex-parameter class of orthogonal Laurent polynomials on the unit circle associated with basic hypergeometric or q-hypergeometric functions is considered. To be precise, we consider the orthogonality properties of the sequence of polynomials { 2Φ1(q−n, qb+1; q−c+b−n; q, qz)}n=0, where 0 < q < 1 and the complex parameters b, c and d are such that b = −1,−2, . . ., c− b+ 1 = −1,−2, . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2003

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-03-03355-5